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Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits
• Scaling impact on the radiation tolerance
• A radiation tolerant layout approach
• The Enclosed Layout Transistor (ELT): special features
• One circuit example: a radiation tolerant analog memory
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CERN: above ground...
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… and under ground
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One of the 4 LHC experiments
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Finding the Higgs boson…
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Why rad-tolerant CMOS ICs?

High luminosity colliders generate a very harsh 
radiation environment, which requires radiation 

hard read-out ICs 

Radiation hardened technologies represent a 
possible solution, but they are expensive and have 

several other problems

Can we use, with some tricks, a commercial, 
“inexpensive” CMOS technology for our circuits ?
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Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits

Total Ionizing Dose (TID) Effects
Single Event Effects (SEE)

• Scaling impact on the radiation tolerance
• A radiation tolerant layout approach
• The Enclosed Layout Transistor (ELT): special features
• One circuit example: a radiation tolerant analog memory
• Conclusions
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Ionizing particles through a MOST

Threshold voltage shift

Mobility degradation

Swing degradation

Threshold voltage shift

Other degradations:
• Transconductance
• Noise
• Matching

F. B. McLean and T. R. Oldham, Harry Diamond Laboratories Technical Report, No. HDL-TR-2129, September 1987.
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Contributions to the VT shift

Oxide 
charges

Interface 
states Total

NMOS or

PMOS

• For deep submicron processes the sign of the VT
shift for NMOS transistors tends to be positive

• The bias conditions during irradiation have a great 
influence on the absolute value of the VT shift
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Transistor level leakage (NMOS)

Bird’s 
beak

Field 
oxide

Parasitic 
MOS

Trapped 
positive 
charge

Parasitic 
channel

Thin gate oxide

R. Gaillard, J.-L. Leray, O. Musseau et al., “Techniques de durcissement des composant, circuits, et systemes electroniques”, Notes of the 
Short Course of the 3rd European Conference on Radiation and its Effects on Components and Systems, Arcachon (France), Sept. 1995.
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Transistor level leakage

BIRD’S 
BEAKS

GATE “CENTRAL” MOS 
TRANSISTOR

log ID log ID

VGS VGS

This is for LOCOS, what about STI? Things did not improve!
M. R. Shaneyfelt et al., "Challenges in Hardening Technologies Using Shallow-Trench Isolation", IEEE TNS, vol. 45, Dec. 1998, pp. 2584-2592.
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Transistor level leakage: example

NMOS - 0.7 µm technology - tox = 17 nm
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Field oxide leakage

N+ WELL CONTACT
FIELD OXIDE

+     +     +     +     +     +     +     +     +     +     +   + ++ +
+

Radiation 
induced leakage 

between VDD
and VSS
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N+ SOURCE

N-WELL
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The Field Oxide Transistor
Total Dose
Bias conditionsPost-irradiation 

leakage currents 
depend on

n+ source

n+ drain
Gate Material
Field oxide quality
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Annealing (mainly in the oxide!)

OXIDE SILICON
EC

EV

ELECTRONS
TUNNELINGGATE

= trapped hole

THERMALLY EMITTED
ELECTRONS
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Single Event Latch-up (SEL)

VDD

VSS

R2VSS
source

VSS
contact

VDD
contact

VDD
source

R1

n well

n  +p  + p  +n  +
R4

R3
p substrate

R6R5

Latch-up can be initiated by ionizing particles (SEL)
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Single Event Upset (SEU)

Static RAM cell VDD

GND

VDD

Highly 
energetic 
particle

GND
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1         0
1 0
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Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits
• Scaling impact on the radiation tolerance

Scaling impact on TID effects
Scaling impact on SEEs

• A radiation tolerant layout approach
• The Enclosed Layout Transistor (ELT): special features
• One circuit example: a radiation tolerant analog memory
• Conclusions
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Total Dose damage and scaling

N. S. Saks et al., IEEE TNS, vol. 31, no. 6, Dec. 1984, and vol. 33, no. 6, Dec. 1986.
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Total Dose damage and scaling

( )itN∆⋅α+
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∆

Decreasing tox we 
decrease the 
degradation of: Transconductance

Subthreshold slope

Noise

And the threshold voltage shift for n-channel 
transistors might not be negative anymore...
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∆VT and tox scaling
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SEL and scaling

Modern CMOS technologies have:
• Retrograde wells
• Thinner epitaxial layers
• Trench isolation
• VDD reduced

All these issues help in preventing SEL,
but they might not be always effective

A. H. Johnston, “The Influence of VLSI Technology Evolution on Radiation-Induced Latchup in 
Space Systems”, IEEE Transactions on Nuclear Science, vol. 43, no. 2, Apr. 1996, pp. 505-521.
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SEU and scaling

P.E. Dodd et al., “Impact of technology trends on SEU in CMOS SRAMs”, IEEE 
Transactions on Nuclear Science, vol. 43, no. 6, Dec. 1996, pp. 2797-2804. 

• VDD reduced

• Node C reduced

BUT

• Charge collected
reduced

The SEU problem may worsen with scaling
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SEGR and scaling

decreasing tox

Maximum 
electric field for 
a quarter micron 
technology

F.W. Sexton, D.M. Fleetwood et al., “Single Event Gate Rupture in Thin Gate Oxides”, 
IEEE Transactions on Nuclear Science, vol. 44, no. 6, December 1997, pp. 2345-2352.
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SEGR in ULSI CMOS

SEGR is not a problem even in the most 
advanced CMOS processes

F.W. Massengill et al., “Heavy-Ion-Induced Breakdown in Ultra-Thin Gate Oxides and High-k Dielectrics”, 
IEEE Transactions on Nuclear Science, vol. 48, no. 6, December 2001, pp. 1904-1912.
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Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits
• Scaling impact on the radiation tolerance
• A radiation tolerant layout approach

Total Ionizing Dose tolerance
Enclosed Layout Transistors drawbacks (more later…)
Single Event Effects tolerance
Density and Speed considerations

• The Enclosed Layout Transistor (ELT): special features
• One circuit example: a radiation tolerant analog memory
• Conclusions
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Enclosed Layout Transistor (ELT)

SD

G

S D

G

ELTs solve the leakage problem in the NMOS transistors 
At the circuit level, guard rings are necessary
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Effectiveness of ELTs

NMOS - 0.7 µm technology - tox = 17 nm
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ELT & deep submicron
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A radiation-hard inverter

O
U

T

p+ guard ring n+ guard ring

IN
VSS VDD

metal polysilicon

n+ diffusion p+ diffusion
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Total ionizing dose tolerance

∆Vth ∝ tox
n + ELT’s and

guard rings =
TID 

Radiation
Tolerance

speed
low power
VLSI
low cost
high yield

Deep sub-µm means also:
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Drawbacks of ELTs

a

b

L

Waste of area

Increase in the parasitic gate 
and source/drain capacitances

Modeling problems

Lack of symmetry

W = 8a + 4L
W/L = 8a/L + 4
Area = 4(a+b+L)2

n+ source

n+ drain

p+ diffusion

Another possible solution?
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Single Event Effect tests

The systematic use of guard rings is 
ALSO an effective tool against SELSEL

NO latch-up observed up to 89 MeVcm2mg-1

SEGR Never observed in our circuits

SEU The higher gate capacitance of ELTs
decreases the sensitivity

F. Faccio et al., “Single Event Effects in Static and Dynamic Registers in a 0.25 µm CMOS 
Technology”, IEEE Transactions on Nuclear Science, vol. 46, no. 6, Dec. 1999 , pp. 1434-1439.
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SEU: comparison with the trend

This static cell

P.E. Dodd et al., “Impact of technology trends on SEU in CMOS SRAMs”, IEEE 
Transactions on Nuclear Science, vol. 43, no. 6, Dec. 1996, pp. 2797-2804. 



Giovanni Anelli 36BNL, 21 April 2004

Density and speed

A & B : 0.6 µm standardA B

C D

Area A
Area C 3.2

Area B
Area D 2.2

C & D : 0.25 µm rad-tol

Inverter with F.O. = 1
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Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits
• Scaling impact on the radiation tolerance
• A radiation tolerant layout approach
• The Enclosed Layout Transistor (ELT):

special UNWANTED features
• One circuit example: a radiation tolerant analog memory
• Conclusions
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Aspect ratio modeling
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Limitation in the W/L ratio values
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Output conductance

L = 0.28 µm    GDI = 11.9 µS    GDO = 9.6 µS
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Matching of ELTs

L = 0.36 µm
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Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits
• Scaling impact on the radiation tolerance
• A radiation tolerant layout approach
• The Enclosed Layout Transistor (ELT): special features
• One circuit example: a radiation tolerant analog memory
• Conclusions
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Why an analog memory?

• Analog memories are often used in High Energy Physics 
applications
• Allows studying how to implement switched capacitor circuits 
in deep submicron CMOS processes
• Thin oxides (needed for radiation tolerance) requires low 
supply voltages, making difficult to have large dynamic ranges
• Allows to study the problems related to mixed signal circuits



Giovanni Anelli 44BNL, 21 April 2004

Memory channel schematic

Digital Control Logic

IN

Vref_w
+

SW_W SW_R SW_F

OUT

Vref_r
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Switch “on” conductance

VDDVTPVDD-VTN
Vin

G

VDD = 1 V

VDD-VTN

VDDVTP

NMOS PMOS

Vin

G VDD = 5 V

Vclk

Vin

Vclkb
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Switch “on” resistance
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Which capacitor for storage?
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PMOS (S & D float.) P+ poly - N well
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Shift register schematic
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Memory cell layout

• Cell area: 56.1 x 11.1 µm2

• Minimum size edgeless transistors for the CMOS switches
• Cox ≈ 5.5 fF/ µm2 C = 600 fF
• Shielding
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Test chip layout

• 0.25 µm CMOS Tech.

• Rad-Tol Layout

• area: 2 x 2 mm2

• 8 channels

• 8 x 128 cells

• 9300 transistors

• capacitors
area: 0.11 mm2

• power consumption:
31.6 mW 
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I-O  characteristic linearity
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Deviation from linearity
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Pedestal variation
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Performance summary

• Noise measured ≈ 0.8 mV rms

• Pedestal variation < 1 mV peak-to-peak

• Dynamic Range > 11 bits

• Linearity > 7.5 bits over 2 V

• Cross talk < 0.4%
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Radiation test results
• Source: 10 KeV X-rays
• Dose rate: 31.6 Krad/min
• The memory is written and read continuously 

• Total dose: 10 Mrad
• Vin = 1.5 V

VDDA [V]
2.5

PWR pre
30.95 mW

PWR after
30.5 mW

∆ %
1.45
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2.5
2

2.5
2.5

fW [MHz]
25
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50

12.5
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390 µW
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PWR after
377 µW
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215 µW

∆ %
3.3
1.8
3.2
4.4



Giovanni Anelli 56BNL, 21 April 2004

Outline

• Introduction and motivation
• Radiation effects on CMOS devices and circuits
• Scaling impact on the radiation tolerance
• A radiation tolerant layout approach
• The Enclosed Layout Transistor (ELT): special features
• One circuit example: a radiation tolerant analog memory
• Conclusions
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Conclusions
• Scaling is a general trend in CMOS, since it allows to have faster, denser and less power 

consuming integrated circuits. Generally it improves TID and SEL tolerance but it might 
worsen SEU 

• We have demonstrated that deep submicron technologies can stand very high radiation 
doses (30 Mrad) provided special layout rules are obeyed

• Guard rings are effective against SEL, and there are special architectures to reduce SEU 
sensitivity

• In this work we have developed the know-how necessary to design radiation tolerant ICs 
using ELTs: modeling, matching and noise issues have been characterized in detail

• The validity of this approach has been demonstrated on several mixed-mode ICs which 
will be used in the LHC experiments

• Due to the possibility of consistent costs reduction, many experiments decided and are 
deciding to adopt our approach to make the integrated circuits for detector read-out

• To pursue this approach in the future, and therefore follow the CMOS technology down-
scaling, many issues will have to be addresses:

Radiation effects in new materials (low and high K dielectrics)
New SEU-tolerant architectures
Low-voltage architectures
Modeling, matching, noise issues
Gate leakage current
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